
CS698O: Unsupervised Pixel–Level Domain Adaptation with

Generative Adversarial Networks

Vaibhav Nagar 14785 Ankur Kumar 14109

Group 10

Introduction

We build our models from some fixed source domain, but we wish to deploy them across one or
more different target domains. Also labeled data (well-annotated image datasets) is often expen-
sive to obtain, and frequently requires lots of human effort. An alternative is to render synthetic
data where ground-truth annotations are generated automatically. Models trained purely on
these rendered images often fail to generalize to real images having different distribution. To
address this shortcoming, prior work introduced unsupervised domain adaptation algorithms
that attempt to map representations between the two domains or learn to extract features that
are domain–invariant. In this research paper ”Unsupervised Pixel–Level Domain Adaptation
with Generative Adversarial Networks”[1], authors present a new approach that learns, in an
unsupervised manner, a transformation in the pixel space from one domain to the other based
on generative adversarial network (GAN) which adapts source-domain images to appear as if
drawn from the target domain.

Figure 1: Proposed Model

1



Domain Adaptation using GANs CS698O Final Report

Model Architecture

Model proposed by authors of the paper is not specific to any task. However for the sake of proper
explanation, their work focuses on classification task. Therefore re-formed problem statement
becomes: Given labeled dataset from source domain and unlabeled dataset from target domain,
the goal is to learn a classifier trained on source data that generalizes well on target domain.
Since the goal is to generalize well to unseen data, authors propose modular approach which
will fit any task on targeted domain. Their model can be understood by the figure shown above.
The idea of the model is as follows:

• Generator block (G): This part of the proposed model takes as input an image from source
domain and some noise vector. The output is an image that belongs to targeted domain (a
part of model training objective). One thing should be clear that target domain and source
domain differ in noise, resolution or such minor variations. Data form these domains do
not differ in high level constructs.

• Discriminator block (D): This is another part of GAN (Generative Adversarial Network).
This module determines if an image belongs to source domain or target domain (second
objective that model training tries to achieve). Discriminator should output real label if
image belongs to source domain, fake otherwise.

• Classifier (T): Again, task need not be classification. Classifier classifies an input image
into one of several classes. Since we are working with MNIST, MNIST-M and USPS
dataset, there are 10 output classes: digits from 0 to 9.

Generator, with the help of discriminator, tries to output image which is as close to the
target domain. Simultaneously, classifier forces the output of generator to be as relevant as
possible.

Training

Our generative adversarial network aims at generating image that is as close to target domain as
possible. Let xs denote an image from source domain, xf as generated image and xt from target
domain. Also, let z denote noise vector and θG, θD and θT denote parameters for G, D and T
respectively. Therefore G(xs, z; θG) denotes output image of generator block, xf , given an input
image from source domain along with some noise. D(x; θD) denotes output of discriminator
(which can be a binary label or softmax value depending on model) given any input image.
Note that discriminator will try to attach real label to xt and fake label to xf . Similarly for
T (x; θT ). So the overall training procedure unfolds as follows:

• Generator takes as input noise z and an image xs from source dataset. Based on the input,
it outputs an image xf .

• Discriminator takes an image xt from target dataset and update its weight based on the
loss value (also known as Domain Classification Loss). Note that output label should be
real in this case.

• Classifier is fed in xs and it also updates its weight based on the loss value (also known as
Task-specific Loss). Here also, classifier should output class which should be same as that
of xs (source dataset is labeled), otherwise it incurrs loss.

• Finally, generator updates its weights based on the output from discriminator and classifier
when input to both of them is xf . Note that discriminator should label xf as fake. For
classifier, xf should belong to same class as that of xs from which it was constructed.

2



Domain Adaptation using GANs CS698O Final Report

This cycle continues till discriminator fails badly on generated image, i.e., it should not be
able to distinguish between generated image and target domain images. As the classifier is being
trained on generated images also (which we hope to be similar to target dataset), we expect the
classifier to perform well on target domain as well.

In the training process, we encountered two types of losses:

• Ld(D,G) : Domain classification loss that discriminator and generator incurr. Discrim-
inator incurrs loss when it labels xt as fake. Generator incurs loss domain loss when
discriminator labels xf as fake.

• Lt(T,G) : Task-specific loss that task, here classifier, and generator incurr. Classifier
incurs loss when it predicts wrong class for xs. Generator incurs loss when classifier
predicts wrong class for xf .

So, the learning alogrithm has to optimize the following minimax objective:

min
θG,θT

max
θD

αLd(D,G) + βLt(T,G)

Exact expression of domain classification loss depends on which GAN is used. The domain
loss in case of PixelDA GAN has following expression:

Ld(D,G) = Ext [log D(xt; θD)] + Exs,z[log(1 −D(G(xs, z; θG); θD))]

In other cases, exact expression varies slightly but gist remains the same. Similarly, exact
expression of task specific loss depends on which classifier is used. We used MNIST classsifier
(as we experimented with MNIST as source dataset) with cross entropy loss with softmax logits.
We experimented with following GANs in our implementation:

• PixelDA GAN [1]

• DCGAN [2]

• WGAN [3]

• LSGAN [4]

• Softmax GAN [5]

Experiments

We experimented with MNIST dataset as our source dataset. For target domain dataset, we used
MNIST-M and USPS dataset. We evaluated our implementation on both these pairs, i.e. from
MNIST to MNIST-M and from MNIST to USPS. We carried our evaluation both qualitatively
and quantitatively. Qualitatively, we compare images generated from our implemented GAN
with that of target and source domain images. Quantitatively, we calculated performance of
our implemented model on these settings. Baseline comparison for this problem statement was
performance of source only trained model, i.e. model trained on source dataset is tested on
target dataset. We implemented baseline as well along with prior results for baseline.

MNIST to USPS

USPS dataset contains 7291 images for training and 2007 images for testing purpose with each
digit class in proportion. The available USPS data was available in .mat format, each image
normalized in -1 to 1. We experimented with normalized MNIST dataset as source domain when

3



Domain Adaptation using GANs CS698O Final Report

target domain is USPS. We experimented with different GANs in this case only. Qualitative
results obtained are as follows:

(a) Image Samples from MNIST
dataset (source domain)

(b) Generated Image Samples (c) Image Samples from USPS
dataset (target domain)

Figure 2: DC-GAN

(a) Image Samples from MNIST
dataset (source domain)

(b) Generated Image Samples (c) Image Samples from USPS
dataset (target domain)

Figure 3: WGAN

(a) Image Samples from MNIST
dataset (source domain)

(b) Generated Image Samples (c) Image Samples from USPS
dataset (target domain)

Figure 4: Softmax GAN

(a) Image Samples from MNIST
dataset (source domain)

(b) Generated Image Samples (c) Image Samples from USPS
dataset (target domain)

Figure 5: LS-GAN

4



Domain Adaptation using GANs CS698O Final Report

(a) Image Samples from MNIST
dataset (source domain)

(b) Generated Image Samples (c) Image Samples from USPS
dataset (target domain)

Figure 6: PixelDA-GAN

Model performances for different GANs are as follows:

Model Performance (MNIST to USPS)

Source only 78.9% (56.8%)

DC-GAN Mode collapse
W-GAN 37.2%

Softmax-GAN 92.3%
LS-GAN 97.2%

PixelDA-GAN 96.36%

Target-only 96.5% (99.0*%)

Table 1: Mean classification accuracy (%) for digit dataset (test only)- MNIST to USPS. The
“Source-only” and “Target-only” rows are the results on the target domain when using no
domain adaptation and training only on the source or the target domain respectively. We note
that our Source and Target only baselines resulted in different numbers than published in the
paper which we also indicate in parenthesis.

MNIST to MNIST-M

MNIST-M dataset was created primarily for unsupervised domain adaptation challenges. It was
created from MNIST dataset by considering digit as binary mask and changing the remaining
with some background patches. Images from this dataset contains 3 channels, whereas MNIST
images contain single channel only. Therefore, we expanded MNIST images by simply stacking
original image data three times. However, the approach taken in the paper differs. They intro-
duce private layer which allows different channel data to share high level layers of the model.
MNIST-M contains 59000 training images and 9000 test images. We evaluated our implemen-
tation for this target domain for PixelDA-GAN only. We obtained the following qualitative
results:

(a) Image Samples from MNIST
dataset (source domain)

(b) Generated Image Samples (c) Image Samples from MNIST-M
dataset (target domain)

Figure 7: PixelDA GAN

Model performances for PixelDA-GAN is as follows:

5



Domain Adaptation using GANs CS698O Final Report

Model Performance (MNIST to MNIST-M)

Source only 63.6%

PixelDA-GAN 96.66%

Target-only 95.9% (97.2%)

Table 2: Mean classification accuracy (%) for digit dataset (test only)- MNIST to MNIST-M.
The “Source-only” and “Target-only” rows are the results on the target domain when using no
domain adaptation and training only on the source or the target domain respectively. We note
that our Source and Target only baselines resulted in different numbers than published in the
paper which we also indicate in parenthesis.

Conclusion

We carried out experiments with different settings as mentioned above. From the result that we
got, we can clearly say that the proposed model outperforms the baseline, which is a model
trained on source only dataset, and other prior works aimed at similar objective. However
in our experiments, we found that replacing PixelDA GAN with LS-GAN resulted in
even better performance. In our implementation, we worked on only classification task. For
testing how well does the model generalize, authors of the paper performed classification task
and pose estimation task on unseen object categories, i.e. model was trained on only 6 classes
and it was tested on rest of the 11 classes. The results in these cases suggest that model is able
to adapt to target domain which is not specific to any task or training dataset. In our quest to
implement this outstanding work, we observed that model gets into mode collapse when GAN
part is replaced with DC-GAN (as evident from generated image for DC-GAN). Authors of the
paper have argued that while task loss does not affect overall performance, they stabilize these
adversarial models (instability of adversarial models has been key problem till date). However, it
remains for us to find out the cause for mode collapse. Finally, one of the several objectives of the
original work was to decouple domain adaptation problem from specific task like classification.
It is evident from our implementation that once the model is trained for some target domain,
we can easily replace the task classifier with any other task objective and the model (GAN part)
need not be trained again.

Future Work

The work done by the authors of this paper is remarkable. It has indeed taken visual recog-
nition community several steps forward with its contribution to domain adaptation as domain
adaptation is one of the challenging problems in deploying systems. We recently came across a
work, SBADA GAN[7], which takes this idea further by employing two way mapping, i.e. from
source domain to target domain and target domain to source domain. The authors of this paper
claim that this results in more robust and more general system. We can implement this work
as well to become more familiar with the ideas involved in domain adaptation challenges.

Acknowledgements

We would like to thank our course instructor Prof. Vinay P. Namboodiri as he gave us oppor-
tunity to choose our own work and get it done our way. We would also like to thank course TAs
and Vinod Kumar Kurmi who helped us, when we needed a guide the most, without worrying
that we were interfering in his timetable frequently.

6



Domain Adaptation using GANs CS698O Final Report

References

[1] Bousmalis, K., Silberman, N., Dohan, D., Erhan, D., & Krishnan, D. (2016). Unsupervised
pixel-level domain adaptation with generative adversarial networks.

[2] Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.

[3] Arjovsky, Martin, Soumith Chintala, and Léon Bottou. ”Wasserstein gan.” arXiv preprint
arXiv:1701.07875 (2017)

[4] Mao, Xudong, et al. ”Least squares generative adversarial networks.” arXiv preprint
ArXiv:1611.04076 (2016).

[5] Lin, Min. ”Softmax gan. arXiv preprint.” arXiv preprint arXiv:1704.06191 (2017).

[6] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
770-778).

[7] P. Russo, F. M. Carlucci, T. Tommasi, & B. Caputo (2017). From source to target and back:
symmetric bi-directional adaptive GAN

7


