
LeNet-5 CNN for MNIST digit classification
CS698U- Computer Vision

Vaibhav Nagar (14785)
Email: vaibhavn@iitk.ac.in

March 19, 2017



1. Implemented LeNet-5 architecture

Architecture of LeNet-5 is modified by using non-linearity functions- Relu and for subsampling,
MaxPooling is used.
Conv-Relu, MaxPool, Conv-Relu, MaxPool, FC-Sigmoid, FC-Sigmoid, FC-Softmax

2. Comparison between the time taken by the conv layers vs. the
fc layers

Layer Numpy implementation (ms) Tensorflow implementation (ms)

Conv-1 0.803 0.303

MaxPool-1 0.105 0.025

Conv-2 2.435 0.169

MaxPool-2 0.0656 0.009

FC-1 0.235 0.05

FC-2 0.0806 0.014

FC-3 (Softmax) 0.032 0.016

Table 1: Feedforward time calculated for each layer on one image.

• Time Taken by conv layers = 3.238 ms on Numpy, 0.472 ms on Tensorflow

• Time taken by fc layers = 0.348 ms on Numpy, 0.08 ms on Tensorflow

• Total FeedForward Time for an image = 3.757 ms on Numpy, 0.601 ms on Tensorflow

3. Comparison between number of params in the conv layers vs.
the fc layers

• Conv Layer-1: 156 parameters

• Max Pool-1: 0

• Conv Layer-2: 2416 parameters

• Max Pool-2: 0

• FC Layer-1: 48120 parameters

• FC Layer-2: 10164 parameters

• FC Layer-3: 850 parameters

Total conv layers parameters = 2572 parameters
Total fc layers parameters = 59134 parameters
Total parameters in LeNet-5 = 61706 parameters

1



4. Plots of training and validation error rates vs. the number of
iterations

• Training Set of 50,000 images, validation set of 10,000 images and test set of 10,000 images
are used for training and testing.

• Three Implementations:

Implementation Architecture Gradient Optimizer Epochs Learning Rate L2 Regularization

Numpy LeNet-5 Adam 4 0.001 0

Tensorflow LeNet-5 Adam 5 0.001 0

MLP
2 hidden layers

(120 and 60 nodes)
AdaGrad 5 0.01 0

4.1 Training and Test dataset Accuracy (Best)

Batch Size Numpy (Training set) Numpy (Test set) Tensorflow (Test set) MLP (Test set)

16 99.1% 98.54% 98.99% 95.09%

32 98.96% 98.55% 99.1% 94.64%

64 98.74% 98.57% 99.2% 93.86%

128 98.35% 98.3% 98.9% 93.1%

Table 2: Training and Test accuracy on different batch sizes

2



4.2 Batch Size = 16

• Numpy Implementation learning curves (epochs=4):

Figure 1: Training loss on batch size = 16
(Numpy)

Figure 2: Training and Validation error rates on
batch size = 16 (Numpy)

Figure 3: TSNE plot of activations of final fc layer on batch size = 16 (Numpy)

3



• Tensorflow Implementation learning curves (epochs=4):

Figure 4: Training loss on batch size = 16 (Ten-
sorflow)

Figure 5: Training and Validation error rates on
batch size = 16 (Tensorflow)

Figure 6: TSNE plot of activations of final fc layer on batch size = 16 (Tensorflow)

4



• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 7: Training loss on batch size = 16 (MLP) Figure 8: Training and Validation error rates on
batch size = 16 (MLP)

Figure 9: TSNE plot of activations of final fc layer on batch size = 16 (MLP)

5



4.3 Batch Size = 32

• Numpy Implementation learning curves (epochs=4):

Figure 10: Training loss on batch size = 32
(Numpy)

Figure 11: Training and Validation error rates on
batch size = 32 (Numpy)

Figure 12: TSNE plot of activations of final fc layer on batch size = 32 (Numpy)

6



• Tensorflow Implementation learning curves (epochs=4):

Figure 13: Training loss on batch size = 32 (Ten-
sorflow)

Figure 14: Training and Validation error rates on
batch size = 32 (Tensorflow)

Figure 15: TSNE plot of activations of final fc layer on batch size = 32 (Tensorflow)

7



• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 16: Training loss on batch size = 32 (MLP) Figure 17: Training and Validation error rates on
batch size = 32 (MLP)

Figure 18: TSNE plot of activations of final fc layer on batch size = 32 (MLP)

8



4.4 Batch Size = 64

• Numpy Implementation learning curves (epochs=4):

Figure 19: Training loss on batch size = 64 Figure 20: Training and Validation error rates on
batch size = 64

Figure 21: TSNE plot of activations of final fc layer on batch size = 64

9



• Tensorflow Implementation learning curves (epochs=4)

Figure 22: Training loss on batch size = 64 Figure 23: Training and Validation error rates on
batch size = 64

Figure 24: TSNE plot of activations of final fc layer on batch size = 64

10



• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 25: Training loss on batch size = 64 (MLP) Figure 26: Training and Validation error rates on
batch size = 64 (MLP)

Figure 27: TSNE plot of activations of final fc layer on batch size = 64 (MLP)

11



4.5 Batch Size = 128

• Numpy Implementation learning curves (epochs=4):

Figure 28: Training loss on batch size = 128 Figure 29: Training and Validation error rates on
batch size = 128

Figure 30: TSNE plot of activations of final fc layer on batch size = 128

12



• Tensorflow Implementation learning curves (epochs=4):

Figure 31: Training loss on batch size = 128 Figure 32: Training and Validation error rates on
batch size = 128

Figure 33: TSNE plot of activations of final fc layer on batch size = 128

13



• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 34: Training loss on batch size = 128
(MLP)

Figure 35: Training and Validation error rates on
batch size = 128 (MLP)

Figure 36: TSNE plot of activations of final fc layer on batch size = 128 (MLP)

14



4.6 Feature Maps of conv and maxpool layers for each digit on different batch
sizes

These Feature maps are present in "visualize_feature_maps" folder for each digit.

5. Inferences

• For batch size=64 , highest test accuracy is achieved after training for 4 epochs.

• L2 regularization with (0.01 regularization parameter), gives slightly less accuracy than
without regularization when trained for 4 epochs. With regularization, network needs to be
trained for more number of epochs.

• Training and feedforward time in tensorflow implementation is much lesser than numpy, as
it is highly optimized.

15


	Implemented LeNet-5 architecture
	Comparison between the time taken by the conv layers vs. the fc layers
	Comparison between number of params in the conv layers vs. the fc layers
	Plots of training and validation error rates vs. the number of iterations
	Training and Test dataset Accuracy (Best)
	Batch Size = 16
	Batch Size = 32
	Batch Size = 64
	Batch Size = 128
	Feature Maps of conv and maxpool layers for each digit on different batch sizes

	Inferences

