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1. Implemented LeNet-5 architecture

Architecture of LeNet-5 is modified by using non-linearity functions- Relu and for subsampling,
MaxPooling is used.
Conv-Relu, MaxPool, Conv-Relu, MaxPool, FC-Sigmoid, FC-Sigmoid, FC-Softmax

2. Comparison between the time taken by the conv layers vs. the
fc layers

Layer Numpy implementation (ms) Tensorflow implementation (ms)

Conv-1 0.803 0.303

MaxPool-1 0.105 0.025

Conv-2 2.435 0.169

MaxPool-2 0.0656 0.009

FC-1 0.235 0.05

FC-2 0.0806 0.014

FC-3 (Softmax) 0.032 0.016

Table 1: Feedforward time calculated for each layer on one image.

• Time Taken by conv layers = 3.238 ms on Numpy, 0.472 ms on Tensorflow

• Time taken by fc layers = 0.348 ms on Numpy, 0.08 ms on Tensorflow

• Total FeedForward Time for an image = 3.757 ms on Numpy, 0.601 ms on Tensorflow

3. Comparison between number of params in the conv layers vs.
the fc layers

• Conv Layer-1: 156 parameters

• Max Pool-1: 0

• Conv Layer-2: 2416 parameters

• Max Pool-2: 0

• FC Layer-1: 48120 parameters

• FC Layer-2: 10164 parameters

• FC Layer-3: 850 parameters

Total conv layers parameters = 2572 parameters
Total fc layers parameters = 59134 parameters
Total parameters in LeNet-5 = 61706 parameters

1



4. Plots of training and validation error rates vs. the number of
iterations

• Training Set of 50,000 images, validation set of 10,000 images and test set of 10,000 images
are used for training and testing.

• Three Implementations:

Implementation Architecture Gradient Optimizer Epochs Learning Rate L2 Regularization

Numpy LeNet-5 Adam 4 0.001 0

Tensorflow LeNet-5 Adam 5 0.001 0

MLP
2 hidden layers

(120 and 60 nodes)
AdaGrad 5 0.01 0

4.1 Training and Test dataset Accuracy (Best)

Batch Size Numpy (Training set) Numpy (Test set) Tensorflow (Test set) MLP (Test set)

16 99.1% 98.54% 98.99% 95.09%

32 98.96% 98.55% 99.1% 94.64%

64 98.74% 98.57% 99.2% 93.86%

128 98.35% 98.3% 98.9% 93.1%

Table 2: Training and Test accuracy on different batch sizes
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4.2 Batch Size = 16

• Numpy Implementation learning curves (epochs=4):

Figure 1: Training loss on batch size = 16
(Numpy)

Figure 2: Training and Validation error rates on
batch size = 16 (Numpy)

Figure 3: TSNE plot of activations of final fc layer on batch size = 16 (Numpy)
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• Tensorflow Implementation learning curves (epochs=4):

Figure 4: Training loss on batch size = 16 (Ten-
sorflow)

Figure 5: Training and Validation error rates on
batch size = 16 (Tensorflow)

Figure 6: TSNE plot of activations of final fc layer on batch size = 16 (Tensorflow)
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• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 7: Training loss on batch size = 16 (MLP) Figure 8: Training and Validation error rates on
batch size = 16 (MLP)

Figure 9: TSNE plot of activations of final fc layer on batch size = 16 (MLP)
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4.3 Batch Size = 32

• Numpy Implementation learning curves (epochs=4):

Figure 10: Training loss on batch size = 32
(Numpy)

Figure 11: Training and Validation error rates on
batch size = 32 (Numpy)

Figure 12: TSNE plot of activations of final fc layer on batch size = 32 (Numpy)
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• Tensorflow Implementation learning curves (epochs=4):

Figure 13: Training loss on batch size = 32 (Ten-
sorflow)

Figure 14: Training and Validation error rates on
batch size = 32 (Tensorflow)

Figure 15: TSNE plot of activations of final fc layer on batch size = 32 (Tensorflow)
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• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 16: Training loss on batch size = 32 (MLP) Figure 17: Training and Validation error rates on
batch size = 32 (MLP)

Figure 18: TSNE plot of activations of final fc layer on batch size = 32 (MLP)
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4.4 Batch Size = 64

• Numpy Implementation learning curves (epochs=4):

Figure 19: Training loss on batch size = 64 Figure 20: Training and Validation error rates on
batch size = 64

Figure 21: TSNE plot of activations of final fc layer on batch size = 64

9



• Tensorflow Implementation learning curves (epochs=4)

Figure 22: Training loss on batch size = 64 Figure 23: Training and Validation error rates on
batch size = 64

Figure 24: TSNE plot of activations of final fc layer on batch size = 64
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• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 25: Training loss on batch size = 64 (MLP) Figure 26: Training and Validation error rates on
batch size = 64 (MLP)

Figure 27: TSNE plot of activations of final fc layer on batch size = 64 (MLP)
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4.5 Batch Size = 128

• Numpy Implementation learning curves (epochs=4):

Figure 28: Training loss on batch size = 128 Figure 29: Training and Validation error rates on
batch size = 128

Figure 30: TSNE plot of activations of final fc layer on batch size = 128
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• Tensorflow Implementation learning curves (epochs=4):

Figure 31: Training loss on batch size = 128 Figure 32: Training and Validation error rates on
batch size = 128

Figure 33: TSNE plot of activations of final fc layer on batch size = 128
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• MLP (Two hidden layers (120 and 60 nodes) with tanh non-linearity) learning curves
(epochs=5, method=adagrad):

Figure 34: Training loss on batch size = 128
(MLP)

Figure 35: Training and Validation error rates on
batch size = 128 (MLP)

Figure 36: TSNE plot of activations of final fc layer on batch size = 128 (MLP)
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4.6 Feature Maps of conv and maxpool layers for each digit on different batch
sizes

These Feature maps are present in "visualize_feature_maps" folder for each digit.

5. Inferences

• For batch size=64 , highest test accuracy is achieved after training for 4 epochs.

• L2 regularization with (0.01 regularization parameter), gives slightly less accuracy than
without regularization when trained for 4 epochs. With regularization, network needs to be
trained for more number of epochs.

• Training and feedforward time in tensorflow implementation is much lesser than numpy, as
it is highly optimized.
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